
Code No: C0402 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M.Tech I - Semester Examinations, March/April-2011 FINITE ELEMENT ANALYSIS (CAD/CAM)

Time: 3hours

Max. Marks: 60

Answer any five questions All questions carry equal marks

- 1. a. List the advantages and disadvantages of FEM over other traditional variational methods. (5)
 - b. Derive the finite element equation using the potential energy approach. (7)
- a. Illustrate the Rayleigh-Ritz method in detail by applying it on an axially loaded bar at one end and fixed at one end as shown on fig.1.
 (6)

- b. Explain about the Lagrangian constraints used in the principles of elasticity with one example. (6)
- 3. For the three stepped bar shown in fig. 2, the fits snugly between the rigid walls at room temperature. The temperature is then raised by 30° C. Determine the displacements at nodes 2 and 3, stresses in the three sections. (12)

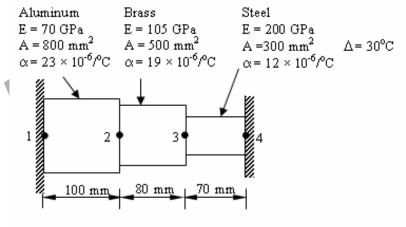


Fig. 2

- 4. a. Derive the B matrix (strain-displacement) for a Constant Strain Triangle (CST) element using area coordinates. (6)
 - b. Calculate the surface loads for the triangle element shown in fig. 3. (6)

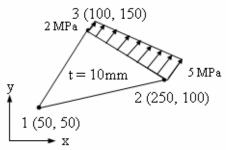
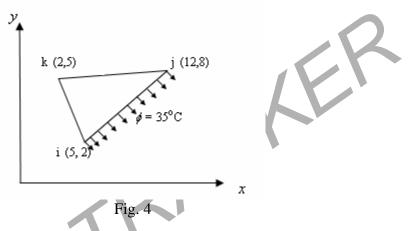



Fig. 3 www.firstranker.com

- 5. a. Explain in detail the applications of isoparametric elements in two and three dimensional stress analysis. (6)
 - b. Using Gaussian quadrature evaluate the following integral $\int_{-1}^{+1} (4\xi + \xi^3) d\xi$. (6)
- 6. Calculate the conductance matrix $[K^{(e)}]$ and load vector $\{F^{(e)}\}$ for the triangle element shown in fig.4. The thermal conductivities are $k_x = k_y = 4$ W/cm-°C and h = 0.3 W/cm² °C. Thickness of the element is 1cm. All coordinates are given in cms. Convection occurs on the side joining modes *i* and *j* (12)

- 7. Obtain the eigen values and eigen vectors for the cantilever beam of length 2m using consistant mass for translation dof with E = 200GPa, $\rho = 7500$ kg/m³. (12)
- 8. a. Discuss about Material and Geometric nonlinearity. (6)
 b. Explain the solution methods for nonlinear algebraic equations. (6)

* * * * * *